Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Non-Newtonian Rheology on Mass Transfer From a Biofluid in Separated and Reattached Flows

[+] Author Affiliations
Khaled J. Hammad

Central Connecticut State University, New Britain, CT

Paper No. IMECE2018-86809, pp. V003T04A035; 8 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5202-6
  • Copyright © 2018 by ASME


Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In