0

Full Content is available to subscribers

Subscribe/Learn More  >

Compliance Effect on the Flow Condition in Vascular In Vitro Experiments

[+] Author Affiliations
Masami Matsuura, Simon Tupin, Makoto Ohta

Tohoku University, Sendai, Japan

Paper No. IMECE2018-87362, pp. V003T04A031; 7 pages
doi:10.1115/IMECE2018-87362
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5202-6
  • Copyright © 2018 by ASME

abstract

Endovascular treatment has become the standard for intracranial aneurysm management. In vitro systems including an artery model are required for devices evaluation and clinician training. Although silicone is usually use for such model, its compliance is known to be lower than blood vessels. The purpose of this study was to analyze the influence of model material compliance on flow properties.

Silicone and 12 [wt%] poly (vinyl alcohol) hydrogel (PVA-H) were used to create two box-shaped models of significantly different compliance. The inner lumen geometry was a 4 [mm] diameter straight tube (parent vessel) and a 10 [mm] diameter sphere representing the aneurysm. A blood-mimicking fluid made of a mixture of glycerin, water and sodium iodide was used to reproduce the viscosity and density of blood and fit models refractive index. The circulation system consisted of a pulsatile blood pump and resistance valve. A flow rate of 250±50 [ml/min] and pressure from 75 to 115 [mmHg] were set inside the model. Pressure and flow rate sensors were used to monitor flow conditions before and after the model. Particle image velocimetry (PIV) was performed to record the difference of flow patterns inside the aneurysm of both model using a Nd:YAG solid laser system and fluorescent particles.

Results revealed a significant change of flow conditions due to model compliance. Attenuation of the flow rate pulse was recorded between the inlet and the outlet of the both model. This attenuation was 51% for PVA-H model. Moreover, a time lag between outlet pressure and outlet flow rate curves was recorded in both model. This time lag was longer with the PVA-H model, as this model exhibit a greater compliance.

PIV experiments revealed significant changes of flow patterns and velocity inside the aneurysm. Because of its high compliance, PVA-H model walls moved under the pulsatile conditions. A change of flow direction and decrease of its velocity were observed near the proximal wall of the aneurysm, compared to the silicone model. Such differences might modify the stress on the wall of the aneurysm.

To conclude, our experiments revealed that compliance has significant impacts on flow properties and should be taken into account for in vitro vascular model manufacturing.

Copyright © 2018 by ASME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In