0

Full Content is available to subscribers

Subscribe/Learn More  >

Chemical Polishing Based Surface Finishing of 3D Printed Steel Components

[+] Author Affiliations
Pawan Tyagi, Tobias Goulet, Nitt Chuenprateep, Robert Stephenson, Rudolph Knott, Antione Reddick, Devdas Shetty

University of the District of Columbia, Washington, DC

Justin Schlitzer, Cordell Benton, Francisco Garcia-Moreno

National Security Campus, Kansas, MO

Paper No. IMECE2018-88378, pp. V002T02A020; 4 pages
doi:10.1115/IMECE2018-88378
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5201-9
  • Copyright © 2018 by ASME

abstract

Reducing surface roughness is critical for improving the mechanical properties of metal 3D printed components. As produced laser sintered metal 3D printed components suffer from high surface roughness. This problem is enormously big for the 3D printed components with intricate geometries involving a large internal surface area. To address this issue, we performed chemical polishing of the 3D printed 316 steel components. After 30 minutes of chemical polishing the color of 3D printed steel components’ surface became dull grey to bright lustrous. According to optical profilometer study, the surface morphology improved dramatically. The Rq roughness parameter changed from ∼8 um to ∼0.6 um. We also applied chemical polishing on cubical metal 3D printed components with internal surfaces. This surface finishing method was equally effective for the internal and external surfaces.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In