Full Content is available to subscribers

Subscribe/Learn More  >

Scanning Electron Microscopy and Optical Profilometry of Electropolished Additively Manufactured 316 Steel Components

[+] Author Affiliations
Pawan Tyagi, Tobias Goulet, Denikka Brent, Kate Klein

University of the District of Columbia, Washington, DC

Francisco Garcia-Moreno

National Security Campus, Kansas, MO

Paper No. IMECE2018-88339, pp. V002T02A019; 5 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5201-9
  • Copyright © 2018 by ASME


Additive manufacturing (AM) can produce highly complex engineering components that are either extremely challenging for the conventional subtractive manufacturing route or not possible otherwise. High surface roughness can make an AM component highly vulnerable to premature failure during fatigue loading. Post-processing aiming to reduce surface roughness is essential to make as produced AM parts functional. We have explored electropolishing route to achieve optimum surface roughness and surface chemistry. We have performed electropolishing treatment on the steel AM parts around 70 °C in an electrolyte comprising the phosphoric acid and sulfuric acid. Profilometry and scanning electron microscopy were performed to study the electropolished and unpolished areas. Optical profilometry study showed that one needs to remove nearly ∼200 μm material from the surface to achieve very smooth surface. Electropolishing was effective in reducing the surface Ra roughness from ∼2 μm rms to ∼0.07 μm rms. Such low rms roughness makes an AM component suitable for almost every engineering application for which a smooth surface is required. Scanning electron microscopy revealed that electropolished area on AM component possessed distinctively different microstructure as compared to the untreated surface of an AM component. We also conducted the compositional analysis of the electropolished area to investigate the possibility of residual contamination from the electropolishing process. Our study revealed that electropolishing is a highly promising route for improving the surface finishing of AM components.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In