0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Study of Unsteady Cavitating Flows and Erosion in a Fuel Nozzle

[+] Author Affiliations
Javad Hosseinpour, Omid Samimi-Abianeh

Wayne State University, Detroit, MI

Luis Bravo

Army Research Laboratory, Aberdeen Proving Ground, MD

Paper No. ICEF2018-9553, pp. V002T06A006; 13 pages
doi:10.1115/ICEF2018-9553
From:
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5199-9
  • Copyright © 2018 by ASME

abstract

Shear-driven cavitation plays an important role in many technological applications, including fuel injectors and power generators. Cavitation affects the performance of components and hence it is desirable to understand and predict its behavior since it can have favorable as well as adverse consequences. Although there have been a vast number of studies, a full understanding or theoretical framework describing its behavior has not yet been achieved. This is in part due to the complexities associated with cavitating flows including, internal flow physics, turbulence, two-phase flow and non-equilibrium thermodynamics. Further, experimental techniques are limited in their ability to visualize the phenomena with sufficient resolution for a detailed analysis. In this work, an unstructured, finite volume, computational fluid dynamic (CFD) code coupled to the Eulerian-Eulerian multi-fluid model is utilized to study cavitation phenomena in a nozzle. The well-reported Winkhlofer nozzle at a range of conditions including ΔP = 20, 40, 60, 70, 75, 80, and 85 bar is modeled using n-dodecane reference fuel properties. Three cavitation sub-models were investigated and the results compared with previous experimental and simulation flow data. The flow turbulence was modeled using Reynolds Averaged Navier Stokes Equation (RANS) and Large Eddy Simulation (LES) models and the results evaluated. A mesh sensitivity analysis was conducted with minimum cell sizes of 13.40, 9.48, 7.55, and 6.13 μm were considered to show grid convergence. Further, a novel erosion model was also integrated to identify the potential vulnerability damage zones with respect to the nozzle flow operating conditions. The results were in good agreement with experimental data from optical nozzles as well as previous simulation results. The models capture the cavitation near the solid boundary region and were able to predict the critical cavitation as well as the chocked flow regions. This was consistent with all the models. The results from the erosion model revealed a direct relationship between surface erosion, in terms of Mean Depth of Penetration Rate (MDPR) and incubation time, to higher pressure drops across the nozzle. These findings can be useful to develop future injector nozzle designs that can better mitigate cavitation induced material damage for improved engine endurance.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In