Full Content is available to subscribers

Subscribe/Learn More  >

Cylinder-Specific Combustion Phasing Modeling for a Multiple-Cylinder Diesel Engine

[+] Author Affiliations
Wenbo Sui, Carrie M. Hall

Illinois Institute of Technology, Chicago, IL

Paper No. ICEF2018-9560, pp. V001T03A003; 10 pages
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5198-2
  • Copyright © 2018 by ASME


An optimal combustion phasing leads to a high combustion efficiency and low carbon emissions in diesel engines. With the increasing complexity of diesel engines, model-based control of combustion phasing is becoming indispensable, but precise prediction of combustion phasing is required for such strategies. Since cylinder-to-cylinder variations in combustion can be more significant with advanced combustion techniques, this work focuses on developing a control-oriented combustion phasing model that can be leveraged to provide cylinder-specific estimates. The pressure and temperature of the intake gas reaching each cylinder are predicted by a semi-empirical model and the coefficients of this intake pressure and temperature model are varied from cylinder-to-cylinder. A knock integral model is leveraged to estimate the SOC (start of combustion) and the burn duration is predicted as a function of EGR fraction, equivalence ratio of fuel and residual gas fraction in a burn duration model. After that, a Wiebe function is utilized to estimate CA50 (crank angle at 50% mass of fuel has burned). This cylinder-specific combustion phasing prediction model is calibrated and validated across a variety of operating conditions. A large range of EGR fraction and fuel equivalence ratio were tested in these simulations including EGR levels from 0 to 50%, and equivalence ratios from 0.5 to 0.9. The results show that the combustion phasing prediction model can estimate CA50 with an uncertainty of ±0.5 crank angle degree in all six cylinders. The impact of measurement errors on the accuracy of the prediction model is also discussed in this paper.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In