Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Combustion Characteristics on Knocking in a Direct Injection Turbo-Charged Gasoline Engine

[+] Author Affiliations
Heechang Oh, Jinwook Son, Juhun Lee, Soohyung Woo, Youngnam Kim, Seungwoo Hong

Hyundai Motor Company, Hwasung-si, Korea

Paper No. ICEF2018-9524, pp. V001T03A001; 9 pages
  • ASME 2018 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • San Diego, California, USA, November 4–7, 2018
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5198-2
  • Copyright © 2018 by ASME


Experimental study on knocking characteristics in a direct injection turbo-charged gasoline engine was carried out. The thermodynamic analysis was conducted to investigate effects of the combustion phasing and the burning rate on the knocking behavior. The localization of knock events and the characterization of the early flame kernel propagation were conducted with the fiber optic sensor.

The advanced combustion phasing and the slower combustion speed generally increased the knocking probability. However, not only quasi-dimensional thermodynamic combustion characteristics but also the spatial parameter such as the flame propagation direction significantly affected the knocking occurrence. From the fiber optic sensor test results, knocking onset location was found to be closely correlated with the flame propagation direction and mainly observed in the opposite side to the main flame propagation direction. The flame propagation direction leaning to the exhaust side was identified to be favorable for the knocking mitigation because the end gas location on hotter exhaust side could be avoided.

Engine tests for various squish designs and tumble port designs were implemented to study the effect of the in-cylinder flow, which significantly affects previously discussed knocking-related parameters. As a result, tumble and squish flow significantly increased combustion speed and advanced combustion phasing. Fuel consumption could be also reduced due to suppressed knocking combustion. In addition, new tumble port design enabled the flame propagation to have favorable leaning direction.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In