Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Breaking Waves for Fixed-Bottom Support Structures for Offshore Wind Turbines

[+] Author Affiliations
Hannah M. Johlas, Spencer Hallowell, Matthew A. Lackner, Sanjay A. Arwade, David P. Schmidt

University of Massachusetts Amherst, Amherst, MA

Shengbai Xie

Convergent Science, Madison, WI

Pedro Lomonaco

Oregon State University, Corvallis, OR

Andrew T. Myers

Northeastern University, Boston, MA

Paper No. IOWTC2018-1095, pp. V001T01A015; 11 pages
  • ASME 2018 1st International Offshore Wind Technical Conference
  • ASME 2018 1st International Offshore Wind Technical Conference
  • San Francisco, California, USA, November 4–7, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5197-5
  • Copyright © 2018 by ASME


Fixed-bottom offshore wind turbines (OWTs) are typically located in shallow to intermediate water depth, where waves are likely to break. Support structure designs for such turbines must account for loads due to breaking waves, but predictions from breaking wave models often disagree with each other and with observed behavior. This variability indicates the need for a better understanding of each model’s strengths and limitations, especially for different ocean conditions. This work evaluates and improves the accuracy of common breaking wave criteria through comparison to Computational Fluid Dynamics (CFD) simulations of breaking waves. The simulated ocean conditions are representative of potential U.S. East Coast offshore wind energy development sites, but the discussion of model accuracy and limitations can be applied to any location with similar ocean conditions. The waves are simulated using CONVERGE, a commercial CFD software that uses a Volume of Fluid (VOF) approach and includes adaptive mesh refinement at the evolving air-water interface. First, the CFD model is validated against experimental data for shoaling and breaking wave surface elevations. Second, 2D simulations of breaking waves are compared to widely-used breaking wave limits (McCowan, Miche, and Goda) for different combinations of wave height, wavelength, water depth, and seafloor slope. Based on these comparisons, the accuracy and limitations of each breaking limit model are discussed. General usage guidelines are then recommended.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In