Full Content is available to subscribers

Subscribe/Learn More  >

Load Mitigation on Floating Offshore Wind Turbines With Advanced Controls and Tuned Mass Dampers

[+] Author Affiliations
John Cross-Whiter, Benjamin B. Ackers

Glosten, Inc., Seattle, WA

Dhiraj Arora

GE Renewable Energy, Schenectady, NY

Alan Wright, Paul Fleming

National Renewable Energy Laboratory, Golden, CO

Matthew Lackner, Semyung Park

University of Massachusetts, Amherst, MA

Paper No. IOWTC2018-1096, pp. V001T01A004; 10 pages
  • ASME 2018 1st International Offshore Wind Technical Conference
  • ASME 2018 1st International Offshore Wind Technical Conference
  • San Francisco, California, USA, November 4–7, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5197-5
  • Copyright © 2018 by ASME


General Electric, the National Renewable Energy Laboratory (NREL), the University of Massachusetts Amherst (UMass), and Glosten have recently completed a US Department of Energy (DOE)-funded research program to study technologies for mitigating loads on floating offshore wind turbines through the use of advanced turbine controls and tuned mass dampers (TMDs).

The analysis was based upon the Glosten PelaStar tension leg platform (TLP) with GE Haliade 150 turbine, a system developed in a previous front end engineering design (FEED) study funded by the Energy Technology Institute (ETI) in the UK. The platform was designed for the WaveHub wave energy research site, with a mean water depth of 59-m.

Loads were analyzed by running time-domain simulations in four 50-year return period (50-YRP) ultimate load state (ULS) conditions and 77 fatigue load state (FLS) environmental conditions. In 50-YRP conditions advanced controls are not active. The influence of TMDs on ULS loads have been reported previously (Park et al. [2]). In FLS conditions advanced controls and TMDs afford dramatic reductions in fatigue damage, offering the potential of significant savings in tower structural requirements.

Simulations in turbine idling conditions were run in OrcaFlex, and simulations in operating conditions were run in FAST. Simulations were run with a baseline turbine controller, representative of the current state of the art, and an advanced controller developed by NREL to use collective and individual blade pitch control to maintain rotor speed and reduce tower loads. UMass developed a number of TMD types, with varying system configurations, including passive nonlinear dampers and semi-actively controlled dampers with an inverse velocity groundhook control algorithm.

Loads and accelerations in FLS conditions were evaluated on the basis of damage equivalent loads (DELs), and fatigue damage was computed by Miner’s summations of stress cycles at the tower base.

To study sensitivity to water depth, loads were analyzed at both the 59-m WaveHub depth and a more commercially realistic depth of 100 m.

TMDs reduce fatigue damage at the tower-column interface flange by up to 52% in 59-m water depth and up to 28% in 100 m water depth. Advanced controls reduce fatigue damage at the tower-column flange by up to 22% in 59-m water depth and up to 40% in 100 m water depth.

The most effective load-mitigation strategy is combining advanced controls with TMDs. This strategy affords a 71% reduction in fatigue damage in both 59-m and 100-m water depths.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In