0

Full Content is available to subscribers

Subscribe/Learn More  >

Tensile Properties of 3D-Printed Polycarbonate/Carbon Nanotube Nanocomposites

[+] Author Affiliations
Karun Kalia, Amir Ameli

Washington State University Tri-Cities, Richland, WA

Paper No. SMASIS2018-8048, pp. V002T08A008; 7 pages
doi:10.1115/SMASIS2018-8048
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5195-1
  • Copyright © 2018 by ASME

abstract

Fused deposition modeling (FDM) is highly commercialized Rapid Prototyping (RP) technology for its ability to build complex parts with low cost in a short period of time. The process parameters in the FDM play a vital role in the mechanical properties of the polymeric parts. Most of the research studies show that the variable parameters such as orientation, layer thickness, raster angle, raster width, and air gap are some of the key parameters that affect the mechanical properties of FDM-processed polymeric parts. However, no reports have been made regarding the influence of nozzle diameter with raster width on the tensile properties of FDM fabricated polymeric parts.

This work was devoted to achieving improved and isotropic mechanical properties in polycarbonate (PC) and PC/carbon nanotube (PC/CNT) nanocomposites by investigating the effect of printing parameters in FDM process. The nozzle diameter to raster width ratio, α was found to significantly affect the mechanical properties. The printing direction dependency in tensile properties were studied with the ratio α < 1 and α≥ 1 at three different raster angles of 0°, 45°/−45° and 90°. For α < 1, Ultimate tensile strength and modulus of elasticity were higher for 0°, compared to 45°/−45° and 90° raster angles. However, for α ≥ 1, the ultimate tensile strength and the modulus of elasticity showed little dependency to print direction. This certainly determines the decrease in anisotropy at higher values of α. Mesostructure characterization with microscopy and image analysis were used to further explain the printing behavior and the resultant properties of the printed samples.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In