0

Full Content is available to subscribers

Subscribe/Learn More  >

Induced Strain Actuation for Solid-State Ornithopters: An Aeroelastic Study

[+] Author Affiliations
Francis Hauris, Onur Bilgen

Rutgers University, Piscataway, NJ

Paper No. SMASIS2018-7944, pp. V001T04A008; 7 pages
doi:10.1115/SMASIS2018-7944
From:
  • ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation
  • San Antonio, Texas, USA, September 10–12, 2018
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5194-4
  • Copyright © 2018 by ASME

abstract

This paper investigates the dynamic aeroelastic behavior of strain actuated flapping wings with various geometries and boundary conditions. A fluid-structure interaction model of a plate-like flapping wing is developed. Assuming a chord Reynolds number of 100,000, the wing is harmonically actuated while varying parameters such as aspect ratio and wing root clamped percentage. Characteristic metrics for the dynamic motion, natural frequency, lift and drag are developed. These results are compared with purely structural behavior to understand the aeroelastic effects.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In