0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Calibration of Resistive Stress Sensors on 4H Silicon Carbide

[+] Author Affiliations
Richard C. Jaeger, Jun Chen, Jeffrey C. Suhling

Auburn University, Auburn, AL

Leonid Fursin

United Silicon Carbide, Inc., Monmouth Junction, NJ

Paper No. IPACK2018-8219, pp. V001T03A001; 6 pages
doi:10.1115/IPACK2018-8219
From:
  • ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • San Francisco, California, USA, August 27–30, 2018
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-5192-0
  • Copyright © 2018 by ASME

abstract

Stress sensors have shown potential to provide “health monitoring” of a wide range of issues related to packaging of integrated circuits, and silicon carbide offers the advantage of much higher temperature sensor operation with application in packaged high-voltage, high-power SiC devices as well as both automotive and aerospace systems, geothermal plants, and deep well drilling, to name a few.

This paper discusses the theory and uniaxial calibration of resistive stress sensors on 4H silicon carbide (4H-SiC) and provides new theoretical descriptions for four-element resistor rosettes and van der Pauw (VDP) stress sensors. The results delineate the similarities and differences relative to those on (100) silicon: resistors on the silicon face of 4H-SiC respond to only four of the six components of the stress state; a four-element rosette design exists for measuring the in-plane stress components; two stress quantities can be measured in a temperature compensated manner. In contrast to silicon, only one combined coefficient is required for temperature compensated stress measurements. Calibration results from a single VDP device can be used to calculate the basic lateral and transverse piezoresistance coefficients for 4H-SiC material.

Experimental results are presented for lateral and transverse piezoresistive coefficients for van der Pauw structures and p- and n-type resistors. The VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor rosettes.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In