Full Content is available to subscribers

Subscribe/Learn More  >

Helicopter Swashplate Design and Analysis Using Semi Compliant Mechanism

[+] Author Affiliations
Ayse Tekes, Adeel Khalid, Niko Giannakakos, Alexander Bryant

Kennesaw State University, Marietta, GA

Paper No. DSCC2018-8944, pp. V003T30A002; 7 pages
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrations and Control of Systems; Vibrations: Modeling, Analysis, and Control
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5191-3
  • Copyright © 2018 by ASME


The swashplate of a model helicopter consists of stationary and rotating plates separated by ball bearings. This mechanism enables the swashplate to tilt in all directions and move vertically as one unit. The lower stationary plate is mounted on the main rotor mast and connected to the cyclic and collective controls by a series of pushrods. There are similar pushrods known as pitch links connected to the upper rotating plate. These pitch links are connected to the pitch horns and control the pitch of individual blades. In this study, the pitch links of the model helicopter are replaced by a semi compliant mechanism. This mechanism is directly connected to the pitch horns to control the pitch of the individual blades. The actuation of the bars can be achieved by using high torque stepper or servo motors. These precise low and high amplitude outputs are specifically required for the cyclic and collective controls of the helicopter swashplate. The compliant swashplate mechanism can be fabricated as a single piece using an injection molding technique or by 3D printing. The mechanism is modeled by two similar vector loops in two different planes. The mathematical model of the plate motion and the forces on the mechanism links are developed and simulated using MATLAB and Simulink, and initial results are discussed in this paper. This mechanism would be applied to the helicopter directional control where the plate in the pitch-roll mechanism would serve as the swash plate of the helicopter.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In