0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Multi-Body Modeling and Validation of a Full Scale Wind Turbine Nacelle Test Bench

[+] Author Affiliations
Meghashyam Panyam, Amin Bibo

Clemson University, North Charleston, SC

Samuel Roach

University of Texas at Austin, Austin, TX

Paper No. DSCC2018-9100, pp. V003T29A005; 8 pages
doi:10.1115/DSCC2018-9100
From:
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrations and Control of Systems; Vibrations: Modeling, Analysis, and Control
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5191-3
  • Copyright © 2018 by ASME

abstract

Ground testing of full-scale wind turbine nacelles has emerged as a highly favorable alternative to field testing of prototypes for design validation. Currently, there are several wind turbine nacelle test facilities with capabilities to perform repeated and accelerated testing of integrated turbine components under loads that the machine would experience during its nominal lifetime. To perform accurate and efficient testing, it is of significant interest to understand the interaction between coupled test rig/dynamometer and nacelle components, particularly when applying extreme loads. This paper presents a multi-body simulation model that is aimed at understanding the responses of a coupled test rig and nacelle system during specific tests. The validity of the model is demonstrated by comparing quasi-static and dynamic simulation responses of key components with experimental data obtained on an actual 7.5 MW test rig. A case study is conducted to analyze a transient grid-loss event; a Low Voltage Ride Through (LVRT) test on the dynamometer and drivetrain components. It is shown that the model provides an efficient way to predict responses of the coupled system during transient/dynamic tests before actual implementation. Recommendations for mitigating the impact of such tests on the test bench drive components are provided. Additionally, observations of differences between transient events in the field and ground based testing are made.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In