0

Full Content is available to subscribers

Subscribe/Learn More  >

Weighted-Least Squares Optimization Method for Control and Shape Design of an Adaptive Blade Twist Distribution to Increase Wind Capture

[+] Author Affiliations
Fuzhao Mou, Hamid Khakpour Nejadkhaki, Aaron Estes, John Hall

University at Buffalo, Buffalo, NY

Paper No. DSCC2018-9233, pp. V002T17A005; 10 pages
doi:10.1115/DSCC2018-9233
From:
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5190-6
  • Copyright © 2018 by ASME

abstract

This paper presents a novel wind turbine blade with an actively adaptable twist angle. A weighted-least square technique is proposed to design and control the blade in its application. Controlling the twist distribution provides new capabilities that may not be achievable with blade pitch or rotor torque control. An adaptive twist angle can reduce fatigue loads and improve the efficiency of wind energy conversion. Our previous work established the theoretical blade twist distribution that maximizes wind capture during partial load operation. The twist distribution changes continuously as a function of wind speed. In practice, it is a challenge to design and control the blade to adapt to this range of transformation. Accordingly, a blade concept and engineering design method are proposed to achieve this task. The blade is constructed from additively manufactured sections that are assumed to have tunable stiffness. The sections are mounted on a centralized spar that provides stiffness. The sections are actuated at each end and have two zones of stiffness. A mathematical framework prescribes (1) length of each blade section and (2) the relative stiffness between a pair of compliant shells. Establishing the section length effectively sets the points of actuation, while the relative stiffness establishes a nonlinear twist. These design selections determine the twist distribution. The method employing weighted-least squares is employed to optimize these selections. The approach biases the shape design and control towards the theoretical twist distribution at a range of designated wind speed. This enables a customized solution that maximizes the wind capture based on the wind conditions at a given installation site.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In