0

Full Content is available to subscribers

Subscribe/Learn More  >

Fused Closed-Loop Flight Dynamics and Wake Interaction Modeling of Tethered Energy Systems

[+] Author Affiliations
Joe Deese, Peyman Razi, Praveen Ramaprabhu

UNC - Charlotte, Charlotte, NC

Michael Muglia

UNC Coastal Studies Institute, Wanchese, NC

Chris Vermillion

North Carolina State University, Raleigh, NC

Paper No. DSCC2018-9190, pp. V002T17A003; 10 pages
doi:10.1115/DSCC2018-9190
From:
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5190-6
  • Copyright © 2018 by ASME

abstract

In this paper, we present a fused flight dynamics and wake interaction modeling framework for arrays (farms) of tethered wind and marine hydrokinetic energy systems. The replacement of conventional towers with tethers necessitates a dynamic model that captures the flight characteristics of each system, whereas the arrangement of the systems in an array necessitates a wake interaction model. The integration of these components is unique to the tethered energy systems literature and is applicable to both airborne wind energy systems and tethered marine hydrokinetic energy systems. In the application case study of this paper, we focus specifically on arrays of ocean current turbines (OCTs), which are intended to operate in the deep waters of the Gulf Stream, adjacent to the eastern coast of the United States. In particular, we evaluate the dynamic performance and resulting projected energy output of an array of tethered OCTs, based on real Gulf Stream resource data from an acoustic Doppler current profiler (ADCP) located adjacent to Cape Hatteras, North Carolina.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In