Full Content is available to subscribers

Subscribe/Learn More  >

An Optimization-Oriented Supervisory Controller Design for Hybrid Fuel Cell Electrified Vehicles

[+] Author Affiliations
Kai Wu, Jing Sun

University of Michigan, Ann Arbor, MI

Milos Milacic, Alhadi Albousefi, Ming Kuang

Ford Motor Company, Dearborn, MI

Paper No. DSCC2018-8995, pp. V001T09A003; 10 pages
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5189-0
  • Copyright © 2018 by ASME


In this paper, an optimization-oriented supervisory controller based on Pontryagin’s Minimum Principle (PMP) is established to develop an on-road energy management strategy for hybrid fuel cell vehicles. A method to estimate initial co-state value based on average power is proposed and demonstrated, which makes the offline PMP algorithm feasible for on board implementation. Furthermore, the proposed adaptive PMP (A-PMP) maintains charge-sustaining performance using readily available driving information, such as the total travel time. The A-PMP is evaluated on a high fidelity Ford fuel cell electrified vehicle powertrain with an experimentally validated fuel cell stack model. Comparing to the default baseline energy management method, the A-PMP provides better fuel economy performance. The simulation results show up to 1.1% miles per gallon gasoline equivalent (MPGe) improvement for Highway Fuel Economy Test (HWFET), 2.1% for Urban Dynamometer Driving Schedule (UDDS), and 7.0% for EPA Federal Test Procedure (FTP-75).

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In