0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Optimization of RML Glove for Improved Grasp Performance

[+] Author Affiliations
Teja Vanteddu, Bijo Sebastian, Pinhas Ben-Tzvi

Virginia Tech, Blacksburg, VA

Paper No. DSCC2018-9004, pp. V001T07A004; 8 pages
doi:10.1115/DSCC2018-9004
From:
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5189-0
  • Copyright © 2018 by ASME

abstract

This paper describes the design optimization of the RML Glove in order to improve its grasp performance. The existing design is limited to grasping objects of large diameter (> 110mm) due to its inability in attaining high bending angles. For an exoskeleton glove to be effective in its use as an assistive and rehabilitation device for Activities of Daily Living (ADL), it should be able to interact with objects over a wide range of sizes. Motivated by these limitations, the kinematics of the existing linkage mechanism was analyzed in detail and the design variables were identified. Two different cost functions were formulated and compared in their ability to yield optimal values for the design variables. The optimal set of design variables was chosen based on the grasp angles achieved and the resulting mechanism was simulated in CAD for feasibility testing. An exoskeleton mechanism corresponding to the index finger was manufactured with the chosen design variables and detailed experimental validation was performed to illustrate the improvement in grasp performance over the existing design. The paper ends with a summary of the experimental results and directions for future research.

Copyright © 2018 by ASME
Topics: Design , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In