Full Content is available to subscribers

Subscribe/Learn More  >

A Traveling Wave Model Guided Robotic Fish Design Using Double Slot-Crank Mechanism

[+] Author Affiliations
Wenyu Zuo, Zheng Chen

University of Houston, Houston, TX

Paper No. DSCC2018-9064, pp. V001T04A008; 9 pages
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5189-0
  • Copyright © 2018 by ASME


In this paper, we present a novel multi-joint robotic fish design using a double-slot crank mechanism. The double slot crank (DSC) is a DC motor driven mechanism, which can convert the rotation to oscillation in two axes. This mechanism can be applied to designing a multi-joint robotic fish by using one DC motor to simulate two-joint robotic fish or cooperating with one servo motor to make a three-joint robotic fish. The slot crank enabled multi-joint design is guided by an idea traveling wave model, which can mimic the traveling wave along the fish body to optimize the propulsion efficiency as well as maneuvering capabilities. After multiple tests, the slot crank mechanism has been proven that it is an efficient propulsion mechanism for robotic fish. The DSC mechanism can achieve good performance on mimicking the real fish swimming and boosting the swimming speed. The DSC mechanism also represents good potential in imitating the real fish locomotion. It is expected to improve the power efficiency of the multi-joint robotic fish. The robotic fish with DSC enabled tail can achieve 20 cm/sec forward speed and 23.6 degree/sec turning speed with less than 8 w power consumption.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In