Full Content is available to subscribers

Subscribe/Learn More  >

Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless DC Motors

[+] Author Affiliations
Amin Ghorbanpour, Hanz Richter

Cleveland State University, Cleveland, OH

Paper No. DSCC2018-8972, pp. V001T04A003; 10 pages
  • ASME 2018 Dynamic Systems and Control Conference
  • Volume 1: Advances in Control Design Methods; Advances in Nonlinear Control; Advances in Robotics; Assistive and Rehabilitation Robotics; Automotive Dynamics and Emerging Powertrain Technologies; Automotive Systems; Bio Engineering Applications; Bio-Mechatronics and Physical Human Robot Interaction; Biomedical and Neural Systems; Biomedical and Neural Systems Modeling, Diagnostics, and Healthcare
  • Atlanta, Georgia, USA, September 30–October 3, 2018
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5189-0
  • Copyright © 2018 by ASME


In this work, simultaneous energy regeneration and motion control for robot manipulators with brushless motors is considered. The robot has a number of semi-active joints connected to ultracapacitors, while the remaining joints are fully-active, powered from constant-voltage power supplies. A three-phase inverter is used to apply voltage to each motor, and the space vector pulse width modulation technique is used to generate voltage commands for the inverter. A PI controller is used to generate voltage commands for the inverter based on reference currents. A method is developed to obtain actual torque based on the desired torque generated by a virtual controller, which can be any suitable robot motion control algorithm, for instance inverse dynamics. A novel optimization approach is used to generate reference currents that maximize the amount of regenerative energy stored in the ultracapacitor and motor inductance subject to the torque demanded by the virtual controller. An explicit solution is found for the optimal current references and it is shown that the well-known choice of a zero direct current component in the direct-quadrature frame is sub-optimal relative to our energy optimization objective. A simulation using a 2-link planar manipulator with one active and one semi-active joint is used to illustrate the results.

Copyright © 2018 by ASME
Topics: Motors , Manipulators



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In