Full Content is available to subscribers

Subscribe/Learn More  >

Attributes of Modern Linepipes and Their Implications on Girth Weld Strain Capacity

[+] Author Affiliations
Yong-Yi Wang

Center for Reliable Energy Systems, Dublin, OH

Steve Rapp

Enbridge, Houston, TX

David Horsley

Horsley Consulting, Ltd., Calgary, AB, Canada

David Warman

Enterprise Products, Houston, TX

Jim Gianetto

CanmetMATERIALS, Hamilton, ON, Canada

Paper No. IPC2018-78809, pp. V003T05A030; 9 pages
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME and Her Majesty the Queen in right of Canada


There has been a number of unexpected girth weld failures in newly constructed pipelines. Girth weld failures have also been observed in pre-service hydrostatic testing. Post-incident investigations indicated that the pipes met the requirements of industry standards, such as API 5L. The welds were qualified per accepted industry standards, such as API 1104. The field girth welding was performed, inspected, and accepted per industry standards, such as API 1104. Some of the traditional causes of girth weld failures, such as hydrogen cracks and high-low misalignment, were not a factor in these incidents.

This paper starts with a review of the recent girth weld incidents. A few key features of a failed weld and their implications are examined. The characteristics of the recent failures is summarized, and the major contributing factors known to date are given.

Some of the options to prevent future failures include (1) changes to the tensile properties of the pipes and enhanced hardenability, (2) welding options aimed at increasing the weld strength and minimizing heat-affected zone (HAZ) softening, and (3) reduction of stresses on girth welds. This paper focuses on the first two options.

The trends of chemical composition and tensile properties of linepipe are reviewed. The potential contribution of these trends to the girth weld incidents is examined. Possible changes to the linepipe properties and necessary updates in the testing and qualification requirements of the linepipes are provided.

Welding options beneficial to enhanced girth weld strain capacity are discussed. Possible revisions to welding procedure qualification requirements, aimed at achieving a minimum level of strain tolerance/capacity, are proposed. The application of previously developed tools in estimating the propensity of HAZ softening is reviewed.

Copyright © 2018 by ASME and Her Majesty the Queen in right of Canada



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In