Full Content is available to subscribers

Subscribe/Learn More  >

Improving the Accuracy of Traditional Dent Fatigue Analysis: A Method for Quantifying the Initial Damage Caused by Dent Formation

[+] Author Affiliations
Michael Turnquist

Quest Integrity, Boulder, CO

Adam Parsons

Quest Integrity, Gold Coast, Australia

Paper No. IPC2018-78684, pp. V001T03A074; 9 pages
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME


The pipeline industry is currently taking several approaches to evaluate the integrity of dents, ovalities, or other geometric anomalies identified from in-line inspection (ILI). A primary threat associated with these features that operators should be concerned with is failure due to fatigue. In order to carry out a more accurate dent fatigue analysis, it is important to be able to quantify the amount of damage accumulated during the initial dent formation process and subsequent shakedown of the dent.

Dents result from permanent deformation of the pipeline which leads to accumulation of plastic strain. Whether this permanent deformation was caused during initial construction (a backhoe striking the pipeline) or in service (changing underground soil conditions), the plastic strains that are observed will result in a decrease in the pipeline’s fatigue life. Pressure cycling has the potential to accumulate additional plastic stain, thus accumulating more fatigue damage. Eventually as the pipeline continues to be cycled, no additional deformation or accumulation of plastic strain will occur; this behavior is referred to as “shakedown.”

Finite element analysis (FEA) can be utilized to quantify how much fatigue damage has been accumulated during the initial dent formation process and subsequent shakedown of the dent. When analyzing pipeline dents using FEA, importance should be placed on accurately simulating the dent forming process so that realistic plasticity effects can be captured. The process of calculating plastic stresses and strains during the dent forming process can be computationally expensive and result in numerical instabilities within the analysis.

As a result, methods for simulating the formation and shakedown of a pipeline dent are continuously being refined. However, since it is difficult to determine exactly how these geometric pipeline anomalies were formed, the applicability and accuracy of such methods contains a great amount of uncertainty and is thus expensive (both from a cost and time standpoint) for an operator to validate.

This paper will identify a new and innovative approach for using FEA to determine the amount of damage accumulated during the initial dent formation process and subsequent shakedown of the dent. This approach uses state-of-the-art FEA modeling techniques coupled with industry knowledge and experience to develop an accurate and efficient method for quantifying this damage. The knowledge gained during this analysis can be used in conjunction with a traditional rapid dent assessment methodology.

A case study will be presented which demonstrates the impact that a direct calculation of this initial damage has on representative pipeline dent assessment analysis. By undertaking this additional analysis, operators will have the potential to eliminate unnecessary digs. Additionally, operators can be more confident that their resources are being applied to the highest priority features.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In