0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Safe Dig Pressure Level for Rock Dents in Gas Pipelines

[+] Author Affiliations
Udayasankar Arumugam, Ming Gao, Ravi Krishnamurthy

Blade Energy Partners, Houston, TX

Rick Wang, Richard Kania

TransCanada Pipeline, Ltd., Calgary, AB, Canada

Paper No. IPC2018-78616, pp. V001T03A073; 11 pages
doi:10.1115/IPC2018-78616
From:
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME

abstract

Pipelines passing through hilly-terrain potentially have numerous rock dents. Some of them require further in-ditch investigation. However, in-ditch experience revealed elastic rebounding and re-rounding due to internal pressure that could cause cracking on dent outside surface when rock is removed even after following the commonly used pressure reduction by industry. Such OD-surface cracking in rock dent could pose safety issues to excavation crew and immediate integrity threat due to gas release. A preliminary research was performed to determine the required safe dig pressure level for rock dent excavation and address if there is a gap between the common industry practice for pressure reduction. This research could assist pipeline operators with setting a safe dig pressure level for rock dent excavation.

The research consists of four components. First, detail review of rock dents cracking experience during excavation has been performed and identified relevant parameters that contributed to OD-cracking. Then, performed several rock dent case studies with different dent depths, indenter sizes, internal pressures and developed criterion for OD cracking using Finite Element Analysis. Thirdly, a decision chart was developed for safe rock dent excavation and presented. Finally, full-scale denting tests with internal pressure was conducted to corroborate the safe dig pressure criterion and compared against FEA results. In this paper, all above components are presented with summary of findings and recommendations for future research.

Copyright © 2018 by ASME
Topics: Pressure , Pipelines , Rocks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In