0

Full Content is available to subscribers

Subscribe/Learn More  >

Algorithms for the Strain Based Analysis of Dented Pipelines

[+] Author Affiliations
Chike Okoloekwe, Samer Adeeb

University of Alberta, Edmonton, AB, Canada

Muntaseer Kainat, Doug Langer, Sherif Hassanien

Enbridge Liquids Pipeline, Edmonton, AB, Canada

Paper No. IPC2018-78433, pp. V001T03A067; 10 pages
doi:10.1115/IPC2018-78433
From:
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME

abstract

Pipeline integrity management commonly leverages nondestructive inspection of pipeline defects via inline inspection (ILI) and assessment of the resultant data. Key parameters for dent analysis include the feature geometry measured by caliper tools and the presence/severity of any interacting features (such as cracks or areas of corrosion) which can be measured with a variety of technologies (such as magnetic flux leakage or ultrasonic tools). Dent profile measurements can be especially susceptible to noise due to the measurement techniques employed, signal quality, and overall tool performance. Analytical methods for strain assessment of dents can employ curve/surface fitting techniques to estimate the curvature and calculate the strain of the dent based on the fitted curve/surface. Noise in the measured profile can result in local areas of high perceived strain, which could lead to misinterpretation of a dent’s true severity, especially when using automated or purely analytical assessment methods.

A deterministic strain-based approach for evaluating the severity of dented pipelines has been presented previously which leverages multi-dimensional B-spline functions to more accurately apply the non-mandatory ASME B31.8 equations for dent assessment. The approach presented previously requires relatively smooth dent profile information to minimize the effects of signal noise. While low pass filters can effectively eliminate noise in the signal, they may also lead to loss of accuracy (e.g. excessive smoothing can reduce the depth and sharpness of a measured dent’s profile). This paper discusses how low pass filters can be optimally used to smooth the raw ILI signals to allow for analytical representation of the dent shape without underestimating its severity.

The conclusion of this venture is a detailed workflow for the analytical assessment of dented pipelines for the rapid characterization of the severity of deformation in pipelines with limited computational demand. This type of assessment allows for initial ranking and assessment of large and complex pipeline systems to select features requiring more detailed assessment or mitigation.

Copyright © 2018 by ASME
Topics: Algorithms , Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In