0

Full Content is available to subscribers

Subscribe/Learn More  >

Root Cause Analysis of an Above-Ground Pipeline With Stress Corrosion Cracking

[+] Author Affiliations
Kevin D. Ralston, Barbara N. Padgett, David M. Norfleet, Liu Cao, John A. Beavers, Thomas J. Prewitt

DNV GL, Dublin, OH

Burke S. Delanty, Mark B. Klages

DNV GL, Calgary, AB, Canada

Paper No. IPC2018-78544, pp. V001T03A041; 13 pages
doi:10.1115/IPC2018-78544
From:
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME

abstract

A comprehensive metallurgical investigation of multiple, externally-initiated, in-service leaks on an above-ground, oil emulsion (multiphase) pipeline concluded that the crack-initiating mechanism was stress corrosion cracking (SCC). A technical root cause analysis (RCA) was performed, utilizing faults trees, to evaluate the potential contributors to the SCC from the time of construction through the identification of the first in-service leak. This paper outlines the RCA findings and current understating of the primary contributors given that SCC on above-ground, insulated carbon steel pipelines has not previously been reported.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In