Full Content is available to subscribers

Subscribe/Learn More  >

Calibration of a Nondestructive Toughness Tester (NDTT) for Measuring Fracture Toughness of Pipeline Steel

[+] Author Affiliations
Steven D. Palkovic, Simon C. Bellemare

Massachusetts Materials Technologies, Waltham, MA

Kamal K. Botros

NOVA Chemicals, Calgary, AB, Canada

Xiande (Derek) Chen, Richard Kania

TransCanada PipeLine, Calgary, AB, Canada

Paper No. IPC2018-78538, pp. V001T03A032; 6 pages
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME


In-ditch/in-service characterization of pipelines using nondestructive evaluation (NDE) can provide valuable data for confirming operating pressure and qualifying pipelines for transporting natural gas of different quality or gas mixture, as well as for determining repair criteria for integrity management programs. This is especially relevant for vintage pipelines that may not have material test reports (MTR) available, and for aging infrastructure that have been subjected to suspected or unknown integrity threats. However, measurement of material fracture toughness currently requires the removal of large samples for laboratory testing, such as compact tension (CT) fracture testing or Charpy impact testing. The present work introduces a new concept, the Nondestructive Toughness Tester (NDTT), that provides a NDE solution for measuring the fracture toughness of pipeline steel in a superficial layer of material (∼0.005 inches). The NDTT uses a specially designed wedge-shaped stylus to generate a Mode I tensile loading that results in a ductile fracture response. NDTT tests are performed in multiple orientations on 8 different pipeline steel samples covering 3 different grades to compare the NDTT material response with the fracture toughness measurements from laboratory CT specimens. Analysis of these results indicate that the height of a fractured ligament that remains on the sample surface after NDTT testing exhibits a linear relationship with traditional CT J-integral measurements normalized by its yield strength. This type of behavior is analogous to the crack-tip-opening-displacement (CTOD) calculated through elastic-plastic fracture mechanics. Tests conducted on the pipe outer diameter and in the longitudinal direction near the pipe mid-wall indicate that the NDTT can measure differences in fracture toughness for different crack orientations. Furthermore, the results show that outer diameter tests provide a conservative estimate of the overall steel fracture toughness. These observations indicate that the NDTT is a viable method for assessing toughness properties of steel materials. Additional research is required to further refine the implementation of the NDTT concept and understand the relationship with laboratory test results on pipe cutouts, but the progress is already a significant step towards obtaining additional material toughness data for integrity management.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In