Full Content is available to subscribers

Subscribe/Learn More  >

Application of Wide-Band Ultrasound for the Detection of Angled Crack Features in Oil and Gas Pipelines

[+] Author Affiliations
Willem Vos

Halfwave AS, Breda, Netherlands

Petter Norli, Emilie Vallee

Halfwave AS, Høvik, Norway

Paper No. IPC2018-78521, pp. V001T03A031; 7 pages
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME


This paper describes a novel technique for the detection of cracks in pipelines. The proposed in-line inspection technique has the ability to detect crack features at random angles in the pipeline, such as axial, circumferential, and any angle in between. This ability is novel to the current ILI technology offering and will also add value by detecting cracks in deformed pipes (i.e. in dents), and cracks associated with the girth weld (mid weld cracks, rapid cooling cracks and cracks parallel to the weld). Furthermore, the technology is suitable for detection of cracks in spiral welded pipes, both parallel to the spiral weld as well as perpendicular to the weld. Integrity issues around most features described above are not addressed with ILI tools, often forcing operators to perform hydrostatic tests to ensure pipeline safety.

The technology described here is based on the use of wideband ultrasound inline inspection tools that are already in operation. They are designed for the inspection of structures operating in challenging environments such as offshore pipelines. Adjustments to the front-end analog system and data collection from a grid of transducers allow the tools to detect cracks in any orientation in the line. Description of changes to the test set-up are presented as well as the theoretical background behind crack detection.

Historical development of the technology will be presented, such as early laboratory testing and proof of concept. The proof of concept data will be compared to the theoretical predictions. A detailed set of results are presented. These are from tests that were performed on samples sourced from North America and Europe which contain SCC features. Results from ongoing testing will be presented, which involved large-scale testing on SCC features in gas-filled pipe spools.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In