Full Content is available to subscribers

Subscribe/Learn More  >

The Future of In-Line Inspection: Free-Floating Smart Sensors

[+] Author Affiliations
Anouk van Pol, John van Pol

Ingu Solutions, Inc., Calgary, AB, Canada

Richard McNealy

Chevron Energy Technology Corporation, Houston, TX

Clay Goudy

Quanta Inline Devices, Houston, TX

Paper No. IPC2018-78662, pp. V001T03A021; 8 pages
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME


Advances in micro-electronics and machine learning open the door to a new method of in-line pipe inspection: small free-floating smart sensors moving in the flow, capturing critical data and enabling operators to optimize pipeline performance, detect anomalies, and flag changes in pipeline condition.

The free-floating nature of these smart sensors allows for full length pipeline inspection without interrupting the operation. This makes frequent inspection possible turning it into a cost-efficient data driven solution. The alternative requires significant capital to modify the pipeline system to accommodate traditional ILI. Furthermore, traditional ILI methods are a one off costly and labor extensive measurement executed once every 5 to 10 years, where these free-floating sensors allow for high frequency, low cost measurements.

Frequent inspection allows for early detection of changes in the pipeline condition such as deposit formation and metal loss as well as timely detection and localization of leaks or similar hazardous conditions. The free-floating nature, combined with the capability to detect pipeline elements such as flanges and welds, permits accurate localization without the need for external markers.

An alternative to the free-floating deployment, the sensor device can also be attached to an off-the-shelf cleaning pig. This solution is especially suited for gas lines and allows for screening of the pipeline condition while cleaning the pipeline with limited extra effort from the operator.

The paper will demonstrate the outcome of over ten validation projects that have been conducted during the course of 2017 using an implementation of this technology in a golf ball-sized (1.5 inch diameter), robust and chemically inert integrated sensor system called Piper™. The Piper™ is equipped with a comprehensive set of sensors, consisting of a 3-axial accelerometer, gyroscope and magnetometer, a combined pressure and temperature sensor, and an advanced system for acoustic leak detection.

Topics that will be addressed include the advantage of using a free-floating integrated device, the capability of reconstructing positioning, the ability to locate and quantify leaks, and the ability to locate pipeline elements such as welds and flanges, and changes in wall thickness. In the Piper™ pig combination, the detectability of bends including the angle and radius of curvature will also be demonstrated.

Copyright © 2018 by ASME
Topics: Sensors , Inspection



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In