Full Content is available to subscribers

Subscribe/Learn More  >

Exceeding Limitations: Ultrasonic Crack Inspections Become Feasible for Liquid Natural Gases

[+] Author Affiliations
Thomas Hennig

NDT Global, Dublin, Ireland

Rogelio Guajardo, Victor Haro, Peter Haberl

NDT Global, Stutensee, Germany

Ernesto Suarez

NDT Global, Houston, TX

Paper No. IPC2018-78573, pp. V001T03A016; 8 pages
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME


Ultrasonic crack inspection services have become a standard solution for pipeline integrity programs, especially for liquid pipelines. ILI tools provide reliable and accurate data for assessment of axial and circumferential cracking defects to derive educated decisions on the integrity and maintenance of the asset. This technology inspects common media such as crude and light oils, water, diesel, benzene, or similar. Running tools in mediums used for commercial operations does not affect the throughput of the line. Crude and light oils, water, diesel, benzene etc. have relatively constant ultrasonic characteristics with varying pressures and temperatures and are very suitable for ultrasonic inspections, therefore called common media within the context of this paper.

If the medium in the pipeline does not fall within the common media, the situation changes. These media are called challenges media. Especially for liquefied natural gases (LNG) or liquefied petroleum gases (LPG) where temperature and pressure have a significant impact on the ultrasonic characteristics of speed of sound, density, and attenuation. LNGs and LPGs typically contain high amounts of propane, butane, and some other higher order alkanes. Due to the high variability of these components to external boundary conditions, inline inspections in these type of pipelines are usually performed by replacing the medium with a more feasible one, e.g. water or diesel. This causes significant impact to productivity and throughput and increases costs and efforts.

The authors will present the work performed to overcome and solve this workaround and run an ultrasonic crack inspection tool in LNG. This paper highlights the challenging aspects considered to successfully perform inline inspections in LNGs. We will present a standardized and systematic approach to overcome limitations of the technology in such media. Starting with the challenges and ideas for enhancement of the service, the paper will discuss the design of the experiment, the experiment itself, the results, and present the conclusions that resulted in the tool development and the analysis procedure. Finally, the authors will present the application of the enhanced service in a customer pipeline, including ILI preparation, execution, analysis, and in-the-ditch verifications.

The structured and systematic approach allows the inspection company to perform successful and reliable crack detection inspections in LNG lines. This includes axial and circumferential cracking threats.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In