0

Full Content is available to subscribers

Subscribe/Learn More  >

Do You Have Wrinkles? A Strain- and Stress-Based Approach for the Assessment of Wrinkles Reported by In-Line Inspection

[+] Author Affiliations
Chris Holliday, Dominic Wynne, Andrew Wilde

ROSEN UK, Newcastle upon Tyne, UK

Alasdair Clyne

ROSEN Canada Ltd., Calgary, AB, Canada

Paper No. IPC2018-78488, pp. V001T03A012; 10 pages
doi:10.1115/IPC2018-78488
From:
  • 2018 12th International Pipeline Conference
  • Volume 1: Pipeline and Facilities Integrity
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5186-9
  • Copyright © 2018 by ASME

abstract

Improvements in in-line inspection (ILI) technology have led to an increase in the probability of detection and ability to characterize geometric features such as wrinkles, the assessment of which was introduced into CSA Z662, “Oil & Gas Pipeline Systems”, in the 2015 version.

The CSA wrinkle acceptance limits are based predominantly on fatigue assessment criteria; part of the assessment procedure is confirmation that wrinkles are free from associated cracking. In practice, this often restricts the assessment to wrinkles that have already been investigated in-field and where the absence of cracking has been confirmed by non-destructive examination (NDE).

This paper describes the assessment of a series of wrinkles that exceeded the CSA height criteria, reported by ILI within field bends in an insulated liquid pipeline. Strain-based assessment, supported by in-field investigations, was used to investigate the likelihood of associated cracking.

Utilizing the high resolution caliper ILI tool data, three-dimensional profiles of the wrinkles were generated. Previous work that compared “tool-measured” with “field-measured” profiles identified that caliper tool measurements can underestimate the true depth and profile of wrinkles, this effect is more pronounced for particularly sharp wrinkles. The wrinkle profiles were therefore adjusted based on the historical field-tool correlation. Strain profiles were then calculated using the guidance within ASME B31.8 Appendix R. It was identified that the majority of the wrinkles exceeded the 6% strain limit commonly applied to dents.

One field bend containing multiple wrinkles was subsequently excavated in order to gather detailed profile information and to inspect for cracking. Upon excavation, the wrinkles were not visually apparent, but their presence was confirmed following removal of the insulating coating. Profile information was subsequently recorded using laser scanning technology. In addition, NDE confirmed the absence of cracking, despite the fact that the majority of wrinkles were associated with strain levels that exceeded the CSA limiting value, 6%. The laser scan data were then compared with the adjusted “tool-measured” profiles. It was observed that the adjusted measurements based on the ILI tool data were conservative, and in some cases excessively so. The caliper measurements were optimized by identifying a factor that could be systematically applied to the “tool-measured” wrinkle profiles, which provided consistency with the profiles measured by the laser scan, thereby improving the accuracy of the dimensions and strain estimation of the remaining (non-excavated) wrinkles.

Finally, a S-N based fatigue assessment was performed using operational cyclic pressure data and estimates of the stress concentration factors associated with the wrinkles. The calculated fatigue lives exceeded the expected operational life of the pipeline.

Copyright © 2018 by ASME
Topics: Inspection , Stress

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In