Full Content is available to subscribers

Subscribe/Learn More  >

Performance Enhancement of Pneumatic Vibration Isolators Using Self-Tuning PID Feedback and Time-Delay-Control (TDC)-Based Feedforward Scheme

[+] Author Affiliations
Jin-Wei Liang, Hung-Yi Chen, Lyu-Cyuan Zeng

Ming Chi University of Technology, New Taipei City, Taiwan

Paper No. DETC2018-85131, pp. V008T10A051; 7 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 30th Conference on Mechanical Vibration and Noise
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5185-2
  • Copyright © 2018 by ASME


A hybrid control scheme that combines a self-tuning PID-feedback loop and TDC-based feedforward scheme is proposed in this study to cope with an active pneumatic vibration isolator. In order to establish an effective TDC feedforward control a reliable mathematical model of the pneumatic isolator is required and developed firstly. Numerical and experimental investigations on the validity of the mathematical model are performed. It is found that although slight discrepancy exists between predicted and observed behaviors of the system, the overall model performance is acceptable. The resultant model is then applied in the design of the TDC feedforward scheme. A neuro-based adaptive PID control is integrated with the TDC feedforward algorithm to form the hybrid control. Numerical and experimental isolation tests are carried out to examine the suppression performances of the proposed hybrid control scheme. The results show that the proposed hybrid control method outperforms solely TDC feedforward while the latter outperforms the passive isolation system. Moreover, the proposed hybrid control scheme can suppress the vibration near the system’s resonance.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In