Full Content is available to subscribers

Subscribe/Learn More  >

Patterns of Cortical Activation When Using Concept Generation Techniques of Brainstorming, Morphological Analysis, and TRIZ

[+] Author Affiliations
Tripp Shealy, Mo Hu

Virginia Tech, Blacksburg, VA

John Gero

University of North Carolina, Charlotte, Charlotte, NC

Paper No. DETC2018-86272, pp. V007T06A035; 9 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 30th International Conference on Design Theory and Methodology
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5184-5
  • Copyright © 2018 by ASME


This paper presents the results of an experimental study comparing cortical activation in the brain when generating solutions using brainstorming, morphological analysis, and TRIZ. Twelve engineering students were given the same three design tasks, respectively, using the three solution generation techniques. Students generated solutions while change in oxygenated blood along the prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy. The results show that generating solutions using brainstorming, morphological analysis, and TRIZ leads to differences in cortical activation, specifically along the region of the brain associated with spatial working memory, cognitive flexibility, and abstract reasoning, called the left dorsolateral prefrontal cortex (left DLPFC). Brainstorming evokes a high average blood oxygenation level dependent (BOLD) response in the left DLPFC early during the solution generation process but this high response is not sustained. In comparison, morphological analysis and TRIZ evoke multiple high average BOLD responses across the solution generation process. Not only was the high average BOLD response sustained but the density of network coordination among brain regions across the PFC was greater for morphological analysis and TRIZ. Higher density is a proxy for higher cognitive effort. The brain regions most central to coordination also varied. During brainstorming the right hemisphere, in a region associated with memory encoding (right PFC), was most activated. During morphological analysis, the left hemisphere, the left DLPFC was most activated. During TRIZ, both the middle and left hemisphere included regions of high activation. These results indicate neuro-cognitive differences of activation patterns, cognitive effort over time, and brain regions central for coordination when using these three concept generation techniques. Future research can begin to explore neuro-cognitive differences as a result of these techniques over multiple uses and the effects of design education.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In