0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Theoretical Study of Two-to-One Internal Resonance of MEMS Resonators

[+] Author Affiliations
Amal Z. Hajjaj, Feras K. Alfosail, Mohammad I. Younis

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Paper No. DETC2018-85539, pp. V006T09A035; 10 pages
doi:10.1115/DETC2018-85539
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 14th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5183-8
  • Copyright © 2018 by ASME

abstract

In this paper, we investigate experimentally and theoretically the two-to-one (2:1) internal resonance between the first two symmetric vibrational modes of microelectromechanical (MEMS) arch resonator electrothermally tuned and electrostatically driven. Applying electrothermal voltage across the beam anchors controls its stiffness and then its resonance frequencies. Hence the ratio between the two frequencies can be tuned to a ratio of two. Then, we study the dynamic response of the arch beam during internal resonance. In the studied case, the presence of high AC bias excitation leads to the direct simultaneous excitation of the 1st and 3rd frequencies in addition to the activation of the internal resonance. A reduced order model and perturbation techniques are presented to analyze the nonlinear response of the structure. In the perturbation technique, the direct excitation of the 3rd resonance frequency is taken into consideration. Results show the presence of Hopf bifurcations, which can lead to chaotic motion at higher excitation. A good agreement among the theoretical and experimental results is shown.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In