0

Full Content is available to subscribers

Subscribe/Learn More  >

Calculation of the Collision-Free Printing Workspace for Fully-Constrained Cable-Driven Parallel Robots

[+] Author Affiliations
Marc Fabritius, Christoph Martin

Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Germany

Andreas Pott

University of Stuttgart, Stuttgart, Germany

Paper No. DETC2018-85961, pp. V05BT07A046; 9 pages
doi:10.1115/DETC2018-85961
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 42nd Mechanisms and Robotics Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5181-4
  • Copyright © 2018 by ASME

abstract

Using fully-constrained cable robots as manipulators for 3D-printing, there is the risk of collisions between the cables and the printing part.

This paper presents a method to calculate the shape of the workspace volume within which a part can be printed without such collisions. The presented method is based on the fact that the printing part is produced in a sequence of horizontal layers. The areas occupied by the cables in the layers are scaled similar mappings of the cross-sections of the printing part. There is no collision if the 2D-shapes occupied by the cables in the printing layer do not overlap with the cross-sections of the printing part in the same layer. A procedure to find the largest printable 2D-shapes within the class of parallelograms for each layer is developed. The maximum printable 3D-volume is then given by stacking the 2D-shapes of each layer. Figures show the results of the method applied on the cable robot IPAnema 3. Finally, a guideline for the design of fully-constrained cable robots to maximize their printable volume is given.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In