0

Full Content is available to subscribers

Subscribe/Learn More  >

Stiffness Control of an Active Transtibial Prosthesis

[+] Author Affiliations
Joseph G. Klein, Philip A. Voglewede

Marquette University, Milwaukee, WI

Paper No. DETC2018-85455, pp. V05AT07A060; 7 pages
doi:10.1115/DETC2018-85455
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 42nd Mechanisms and Robotics Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5180-7
  • Copyright © 2018 by ASME

abstract

Active, transtibial prostheses typically use finite state control algorithms that struggle with cadence and gait variability of the amputee. Recent work in artificial neural networks (ANN) have shown the possibility to predict the users intent based on EMG activity and the current position of the ankle, which can be used as an input signal into an improved controller. This paper examines how to implement an ANN signal into a zero order impedance controller, i.e., a stiffness controller, on a specific active transtibial prosthesis. The prosthesis incorporates a linear spiral spring in parallel with a four-bar mechanism. In order to implement stiffness control, the spring was moved to being in series with the four-bar mechanism to establish a relationship between the torque of the spring and the position of the motor. To ensure stiffness control is feasible, a MATLAB Simulink model of the system was created to test the robustness of the controller and the effect of moving the spring from parallel to series. The robustness of the controller was verified as the ankle position and torque requirements are met in the simulation. The Simulink model accurately models the new system and can be used in the future to optimize the motor or the four-bar mechanism for this new type of control.

Copyright © 2018 by ASME
Topics: Prostheses , Stiffness

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In