Full Content is available to subscribers

Subscribe/Learn More  >

Design of Disposable 3D Printed Surgical End-Effectors for Robotic Lumbar Discectomy Procedures

[+] Author Affiliations
Benjamin V. Johnson, Zekun Gong, David J. Cappelleri

Purdue University, West Lafayette, IN

Brian A. Cole

Englewood Orthopedic Associates, Englewood, NJ

Paper No. DETC2018-85257, pp. V05AT07A055; 10 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 42nd Mechanisms and Robotics Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5180-7
  • Copyright © 2018 by ASME


In this paper, the design of disposable 3D printed surgical end-effectors for robotic lumbar discectomy is presented. Discectomy is the surgery to remove the herniated disc material that is pressing on a nerve root or spinal cord. This surgery is performed to relieve pain or numbness caused by the pressure on the nerve. The limited workspace of the spine (< 27 cm3) results in challenging design requirements for surgical instruments. We propose a new cannula-based robotic lumbar discectomy procedure that can accommodate multiple articulated tools in the workspace at the same time and can be controlled teleoperatively by the surgeon. We present designs for two instruments for this proposed system: an articulated nerve retractor and an articulated grasper. The end-effectors of each are 3D printed with multiple materials, with flexible links acting as joints of the mechanism. These flexible links are actuated by cables which provide sufficient articulation and manipulation forces in the surgical workspace. The end-effector’s articulated flexible joint kinematics is modeled and tested for range of motion capabilities. The retraction forces for the nerve retractor and the grasping force for the grasper are also experimentally tested and verified to meet all the design requirements. Additionally, fatigue testing of the flexible joint is presented and teleoperated control for the instruments is demonstrated.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In