0

Full Content is available to subscribers

Subscribe/Learn More  >

Kinematic and Potential Energy Analysis of Self-Adaptive Robotic Legs

[+] Author Affiliations
Dmitri Fedorov, Lionel Birglen

Polytechnique Montreal, Montreal, QC, Canada

Paper No. DETC2018-85824, pp. V05AT07A041; 8 pages
doi:10.1115/DETC2018-85824
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 42nd Mechanisms and Robotics Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5180-7
  • Copyright © 2018 by ASME

abstract

This paper presents how the kinematic and potential energy analysis of self-adaptive robotic legs can help to improve their performances with respect to their ability to overcome obstacles and the required actuation torque to do so. Self-adaptive leg mechanisms, inspired by the underactuated linkages used in grasping, generally rely on a single degree of freedom (DOF) to generate a trajectory at its endpoint that is appropriate for walking applications. When colliding with an unexpected obstacle, a second DOF in the leg automatically engages and creates a motion allowing the leg to overcome said obstacle. Since this behavior is obtained mechanically, with no sensor or control, these robotic legs are referred to as self-adaptive. In this paper, the conditions for the passive adaptation to obstacles are first briefly recalled. Then, the range of obstacles for which this adaptation is possible is determined through the analysis, using potential energy, of the mechanism workspace and it is shown how the results are connected to its kinematics. In particular, the influence of the shape of the terminal link of the leg is discussed with two compared examples. Finally, practical designs and especially the relative advantages of various locking mechanisms, required to improve stability during the support phase of the leg trajectory, are discussed.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In