0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Squeeze Film and Initial Deflection on the Resonance Frequencies and Modal Damping of Circular Microplates

[+] Author Affiliations
Aymen Jallouli, Najib Kacem, Joseph Lardies

Université Bourgogne Franche-Comté, Besançon, France

Fehmi Najar

Tunisia Polytechnic School, La Marsa, Tunisia

Paper No. DETC2018-85993, pp. V004T08A011; 10 pages
doi:10.1115/DETC2018-85993
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5179-1
  • Copyright © 2018 by ASME

abstract

We investigate the effects of squeeze air film and initial deflection on the resonance frequencies and modal damping of capacitive circular microplates. The equation of motion of a circular microplate, which are derived from the von kármán plate theory, coupled with the Reynolds equation are discretized using the Differential Quadrature Method (DQM). The eigenvalues and eigenvectors of the multiphysical problem are determined by perturbing the system of equations around a static solution. Therefore, the resonance frequencies, modal damping coefficients and mode shapes of the plate and the fluid can be determined. The advantage of using DQM is that the solution of the system can be obtained with only few grid points. The obtained numerical results are compared with the experimental data for the case of a capacitive circular microplates with an initial deflection. The increase of the static pressure leads to a shift in the resonance frequencies due to the increase in the stiffness of the plate. Also the initial deflection change the resonance frequencies due to the change in the effective gap distance. The developed model is an effective tool to predict the dynamic behavior of a microsystem under the effect of air film and with initial deflection.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In