0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Motion Error of Cylindrical Roller Bearings Under Radial Load

[+] Author Affiliations
Yu Yongjian, Li Jishun, Xue Yujun, Si Zhuoyi

Henan University of Science and Technology, Luoyang, China

Chen Guoding

Northwestern Polytechnical University, Xi'an, China

Halim Gurgenci

University of Queensland, Brisbane, Australia

Paper No. DETC2018-85214, pp. V004T05A035; 8 pages
doi:10.1115/DETC2018-85214
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5179-1
  • Copyright © 2018 by ASME

abstract

Since the rotary motion of a rolling bearing is implemented by bearing components under geometric constraints, the motion accuracy of an assembled bearing should also be the result of interaction among geometric errors of bearing components. Therefore, it is significant to understand the relationship between the geometric errors of bearing components and motion accuracy of an assembled bearing for the design of high accuracy bearing. Based on quasi-static analytical method, a mathematical model for motion error of cylindrical roller bearings is established considering the roundness error of outer raceway. The motion error of a rolling bearing is affected by the amplitude and harmonic order of the roundness error of outer raceway, number of rollers and the operating conditions such as radial load, rotary speed of outer ring. The effects of above parameters are analyzed. The results show that the motion accuracy of a cylindrical roller bearing degrades with the increase of amplitude of the roundness error of outer raceway and the rotary speed of outer ring. The variation of the radial displacement of outer ring varies periodically with the increase of the harmonic order of the roundness error of outer raceway, and its period is equal to the roller number. With the increase of the roller number, the variation of radial displacement of the outer ring fluctuates. The larger the radial load is, the smaller the variation of radial displacement of outer ring is. The results would be helpful to reduce the production costs by controlling the distribution of machining tolerance of bearing components.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In