0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Life Prediction of Vortex Reducer Based on Stress Gradient

[+] Author Affiliations
Yanbin Luo, Yanrong Wang, Bo Zhong, Jiazhe Zhao, Xiaojie Zhang

Beihang University, Beijing, China

Paper No. DETC2018-85356, pp. V004T05A028; 10 pages
doi:10.1115/DETC2018-85356
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5179-1
  • Copyright © 2018 by ASME

abstract

The effects of stress gradient and size effect on fatigue life are investigated based on the distributions of stress at notch root of the notched specimens of GH4169 alloy. The relationship between the life of the notched specimens and the smooth specimens is correlated by introducing the stress gradient effect factor, and a new life model of predicting the notched specimens based on the Walker modification for the mean stress effect is established. In order to improve the prediction precision of life model with the equation parameters having a definite physical significance, the relationships among fatigue parameters, monotonic ultimate tensile strength and reduction of area are established. Three-dimensional elastic finite element (FE) analysis of a vortex reducer is carried out to obtain the data of stress and strain for predicting its life. The results show that there is a high-stress gradient at the edge of the air holes of the vortex reducer, and it is thus a dangerous point for fatigue crack initiation. The prediction result of the vortex reducer is more reasonable if the mean stress, stress gradient and size effect are considered comprehensively. The developed life model can reflect the effects of many factors well, especially the stress concentration. The life of the notched specimens predicted by this model give a high estimation precision, and the prediction life data mainly fall into the scatter band of factor 2.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In