0

Full Content is available to subscribers

Subscribe/Learn More  >

Manufacturability Constraint Formulation for Design Under Hybrid Additive-Subtractive Manufacturing

[+] Author Affiliations
Albert E. Patterson, James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2018-85637, pp. V004T05A011; 11 pages
doi:10.1115/DETC2018-85637
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5179-1
  • Copyright © 2018 by ASME

abstract

This article addresses the generation and use of manufacturability constraints for design under hybrid additive/subtractive processes. A method for discovering the natural constraints inherent in both additive and subtractive processes is developed; once identified, these guidelines can be converted into mathematical manufacturability constraints to be used in the formulation of design problems. This ability may prove to be useful by enhancing the practicality of designs under realistic hybrid manufacturing conditions, and supporting better integration of classic design-for-manufacturability principles with design and solution methods. A trade-off between design manufacturability and elegance has been noted by many scholars. It is posited that using realistic manufacturing conditions to drive design generation may help manage this trade-off more effectively, focusing exploration efforts on designs that satisfy more comprehensive manufacturability considerations. While this study focuses on two-step AM-SM hybrid processes, the technique extends to other processes, including single-process fabrication. Two case studies are presented here to demonstrate the new constraint generation concept, including formulation of shape and topology optimization problems, comparison of results, and the physical fabrication of hybrid-manufactured products. Ongoing work is aimed at rigorous comparison between candidate constraint generation strategies and the properties of the constraint mapping.

Copyright © 2018 by ASME
Topics: Manufacturing , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In