Full Content is available to subscribers

Subscribe/Learn More  >

Hydraulic Pressure Control and Parameter Optimization of Brake-by-Wire System Based on Driver-Automation Cooperative Driving

[+] Author Affiliations
Xiaohui Liu, Liangyao Yu, Sheng Zheng, Jinghu Chang, Fei Li

Tsinghua University, Beijing, China

Paper No. DETC2018-85409, pp. V003T01A002; 7 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 20th International Conference on Advanced Vehicle Technologies; 15th International Conference on Design Education
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5178-4
  • Copyright © 2018 by ASME


The automatic driving technology of vehicle is being carried out in real road environment, however, the application of unmanned vehicle still needs proof and practice. Autonomous vehicles will be in the stage of co-drive for a long time, that is, driver-control and autonomous system assisting or autonomous system control and driver assisting. The braking system of the intelligent vehicle needs to work in driver driving mode or automatic driving mode during a long stage. Brake-by-Wire system is the development trend of vehicle braking system. The brake modes of the Brake-by-Wire system can be switched easily and it can satisfy the demand for braking system of the intelligent vehicle. However, when the driving mode changes, the characteristic of the braking intention and braking demand will change. In order to improve the braking performance of the intelligent vehicle, hydraulic pressure control and parameter optimization of the Brake-by-Wire system during different driving modes should be different.

Researches are made on hydraulic pressure control and parameter optimization of the Brake-by-Wire system with consideration on differences of braking intensity input and braking requirement between driver driving mode and automatic driving mode through theory analysis, Matlab/Simulink-AMESim simulation and bench test. The study is helpful for improving the braking performance of Brake-by-Wire system in hydraulic pressure control of driver-automation cooperative driving.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In