Full Content is available to subscribers

Subscribe/Learn More  >

Road Adhesion Coefficient Estimation Based on the Steering Wheel Rebound After Steering

[+] Author Affiliations
Liangyao Yu, Sheng Zheng, Xiaohui Liu, Jinghu Chang, Fei Li

Tsinghua University, Beijing, China

Paper No. DETC2018-85407, pp. V003T01A001; 7 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 20th International Conference on Advanced Vehicle Technologies; 15th International Conference on Design Education
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5178-4
  • Copyright © 2018 by ASME


Accurately estimating road adhesion coefficient is very important for vehicle stability control system. In this paper, an innovation method to estimate the road adhesion coefficient is proposed. This method can be used in vehicles without additional sensors. And this method is especially suitable to be used in the intelligent vehicle equipped with steer-by-wire (SBW) system. When vehicle steers, releasing the steering wheel suddenly will result in rebound to a certain angle. When the steer wheel turns the same angle on different road whose adhesion coefficients are different, the front wheel rebound angles are different. The friction moment between the road and tire is the main factor to prevent the tire from turning back, and the coefficient of friction is equal to road adhesion coefficient when the vehicle is stationary. In this paper, the detailed dynamical models describing the whole process of the front wheel and tire rebound are established. Furthermore, the Luenberger reduced-order disturbance observer is established to estimate the friction moment, and then the adhesion coefficient is estimated. The SBW system which is usually equipped in intelligent vehicles can control the steer moment and steer angle accurately. When the steer wheel turns to certain angle, the SBW system is able to stop outputting torque quickly and timely, which is important for improving the experiment accuracy. In this paper, the SBW system is used to conduct an experiment on different roads. The experiment results demonstrate the validity of this method.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In