0

Full Content is available to subscribers

Subscribe/Learn More  >

A Hybrid Computational and Analytical Model of Inline Drip Emitters

[+] Author Affiliations
Jaya Narain, Amos G. Winter, V

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DETC2018-85871, pp. V02BT03A018; 18 pages
doi:10.1115/DETC2018-85871
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 44th Design Automation Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5176-0
  • Copyright © 2018 by ASME

abstract

This paper details a hybrid computational and analytical model to predict the performance of inline pressure-compensating (PC) drip irrigation emitters. The term inline refers to flow control devices mounted within the irrigation tubing. Pressure-compensating emitters deliver a relatively constant flow rate over a range applied pressure to accurately meter water to crops. Flow rate is controlled within the emitter by directing the water through a tortuous path (which imposes a fixed resistance), and then through a variable resistor composed of a flexible membrane that deflects under changes in pressure, restricting the flow path. An experimentally validated computational fluid dynamics (CFD) model was used to predict flow behavior through tortuous paths, and a pressure resistance parameter was derived to represent the pressure drop with a single variable. The bending and shearing mechanics of the membrane were modeled analytically and refined for accuracy by deriving a correction factor using finite element analysis. A least-squares matrix formulation that calculates the force applied by a line load of any shape, along which there is a prescribed deflection applied on a rectangular membrane, was derived and was found to be accurate to within one percent. The applicability of the assumption of locally fully developed flow through the pressure compensating chamber in a drip emitter was analyzed.

The combined hybrid computational-analytical model reduces the computational time of modeling drip emitter performance from days to less than 30 minutes, dramatically lowering the time required to iterate and select optimal designs. The model was validated using three commercially available drip emitters, rated at 1.1, 2, and 3.8 L/hr. For each, the model predicted the flow rate with an error of twenty percent or less, as compared to the emitter performance published by the manufacturer.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In