0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Adaptive Topology Optimization Method Considering Unnecessary Element Removal and Progressive Mesh Refinement

[+] Author Affiliations
Yingchun Bai, Cheng Lin

Beijing Institute of Technology, Beijing, China

Il Yong Kim

Queen’s University, Kingston, ON, Canada

Paper No. DETC2018-85243, pp. V02BT03A002; 10 pages
doi:10.1115/DETC2018-85243
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 44th Design Automation Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5176-0
  • Copyright © 2018 by ASME

abstract

This paper proposes an adaptive topology optimization (TO) approach considering unnecessary element removal and progressive element refinement. A two-stage density filtering for element removal is developed to relax the design space for next iteration, and therefore make a trade-off between solution quality and optimization efficiency. An isolated element detection and deletion is also conducted between element removal and element refinement operation to guarantee the numerical stability. Two 2D numerical examples and one 3D design problems are investigated to demonstrate the effectiveness of the proposed method. Based on the numerical tests, the applicability range of the proposed method and recommended range of element density threshold are provided as well.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In