Full Content is available to subscribers

Subscribe/Learn More  >

Customization of a 3D Printed Prosthetic Finger Using Parametric Modeling

[+] Author Affiliations
Daniel Lim, Thomás Georgiou, Aashish Bhardwaj, Grace D. O’Connell, Alice M. Agogino

University of California, Berkeley, Berkeley, CA

Paper No. DETC2018-85645, pp. V02AT03A034; 9 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 44th Design Automation Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5175-3
  • Copyright © 2018 by ASME


Prosthetic limbs and assistive devices require customization to effectively meet the needs of users. Despite the expense and hassle involved in procuring a prosthetic, 56% of people with limb loss end up abandoning their devices [1]. Acceptance of these devices is contingent on the comfort of the user, which depends heavily on the size, weight, and overall aesthetic of the device. As seen in numerous applications, parametric modeling can be utilized to produce medical devices that are specific to the patient’s needs. However, current 3D printed upper limb prosthetics use uniform scaling to fit the prostheses to different users.

In this paper, we propose a parametric modeling method for designing prosthetic fingers. We show that a prosthetic finger designed using parametric modeling has a range of motion (ROM) (path of the finger tip) that closely aligns with the digit’s natural path. We also show that the ROM produced by a uniformly scaled prosthetic poorly matches the natural ROM of the finger. To test this, finger width and length measurements were collected from 50 adults between the ages of 18–30. It was determined that there is negligible correlation between the length and width of the index (D2) digit among the participants.

Using both the highest and the lowest length to width ratio found among the participants, a prosthetic finger was designed using a parametric model and fabricated using additive manufacturing. The mechanical design of the prosthetic finger utilized a crossed four bar linkage mechanism and its ROM was determined by Freudenstein’s equations. By simulating the different paths of the fingers, we demonstrate that parametrically modeled fingers outperform uniformly scaled fingers at matching a natural digit’s path.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In