0

Full Content is available to subscribers

Subscribe/Learn More  >

Control of Shared Energy Storage Assets Within Building Clusters Using Reinforcement Learning

[+] Author Affiliations
Philip Odonkor, Kemper Lewis

University at Buffalo, Buffalo, NY

Paper No. DETC2018-86094, pp. V02AT03A028; 11 pages
doi:10.1115/DETC2018-86094
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 44th Design Automation Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5175-3
  • Copyright © 2018 by ASME

abstract

This work leverages the current state of the art in reinforcement learning for continuous control, the Deep Deterministic Policy Gradient (DDPG) algorithm, towards the optimal 24-hour dispatch of shared energy assets within building clusters. The modeled DDPG agent interacts with a battery environment, designed to emulate a shared battery system. The aim here is to not only learn an efficient charged/discharged policy, but to also address the continuous domain question of how much energy should be charged or discharged. Experimentally, we examine the impact of the learned dispatch strategy towards minimizing demand peaks within the building cluster. Our results show that across the variety of building cluster combinations studied, the algorithm is able to learn and exploit energy arbitrage, tailoring it into battery dispatch strategies for peak demand shifting.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In