Full Content is available to subscribers

Subscribe/Learn More  >

Reducing Evaluation Cost for Circuit Synthesis Using Active Learning

[+] Author Affiliations
Tinghao Guo, Daniel R. Herber, James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2018-85654, pp. V02AT03A011; 11 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 44th Design Automation Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5175-3
  • Copyright © 2018 by ASME


In this article, an active learning strategy is introduced for reducing evaluation cost associated with system architecture design problems and is demonstrated using a circuit synthesis problem. While established circuit synthesis methods, such as efficient enumeration strategies and genetic algorithms (GAs), are available, evaluation of candidate architectures often requires computationally-expensive simulations, limiting the scale of solvable problems. Strategies are needed to explore architecture design spaces more efficiently, reducing the number of evaluations required to obtain good solutions. Active learning is a semi-supervised machine learning technique that constructs a predictive model. Here we use active learning to interactively query architecture data as a strategy to choose which candidate architectures to evaluate in a way that accelerates effective design search. Active learning is used to iteratively improve predictive model accuracy with strategically-selected training samples. The predictive model used here is an ensemble method, known as random forest. Several query strategies are compared. A circuit synthesis problem is used to test the active learning strategy; two complete data sets for this case study are available, aiding analysis. While active learning has been used for structured outputs, such as sequence labeling task, the interface between active learning and engineering design, particularly circuit synthesis, has not been well studied. The results indicate that active learning is a promising strategy in reducing the evaluation cost for the circuit synthesis problem, and provide insight into possible next steps for this general solution approach.

Copyright © 2018 by ASME
Topics: Circuits



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In