0

Full Content is available to subscribers

Subscribe/Learn More  >

A Statistical Approach to Ranking Similarities of Three Function Structure Groups Using Directed Graphs

[+] Author Affiliations
Briana M. Lucero

Los Alamos National Laboratory, Los Alamos, NM

Matthew J. Adams

Arizona State University, Tempe, AZ

Paper No. DETC2018-86090, pp. V01AT02A010; 9 pages
doi:10.1115/DETC2018-86090
From:
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 38th Computers and Information in Engineering Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5172-2
  • Copyright © 2018 by ASME

abstract

Prior efforts in the study of engineering design employed various approaches to decompose product design. Design engineers use functional representation, and more precisely function structures, to define a product’s functionality. However, significant barriers remain to objectively quantifying the similarity between two function structures, even for the same product when developed by multiple designers. For function-structure databases this means that function-structures are implicitly categorized leaving the possibility of incorrect categorization and reducing efficacy of returned analogous correlations. Improvements to efficacy in database organization and queries are possible by objectively quantifying the similarity between function structures.

The proposed method exploits fundamental properties of function-structures and design taxonomies. We convert function-structures into directed graphs (digraphs) and equivalent adjacency matrices. The conversion maintains the directed (function → flow → function) progression inherent to function-structures and enables the transformation of the function-structure into a standardized graph. For design taxonomies (e.g. D-APPS), graph nodes represent flows in a consistent (but arbitrary) ordering. By exploiting the directional properties of function-structures and defining the flows as the graphical nodes, the objective and standardized comparison of two function-structures becomes feasible. We statistically quantify the association between digraphs using the Pearson Product Moment Correlation (PPMC) for both within-group and between-group comparisons. The method was tested on three product types (ball thrower, food processor, and an ice cream maker) with function-structures defined by various designers. The method suggested herein is provided as a proof-of-concept with suggested verification and validation approaches for further development.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In