Full Content is available to subscribers

Subscribe/Learn More  >

A Super-Metamodeling Framework to Optimize System Predictability

[+] Author Affiliations
Zhuo Yang, Douglas Eddy, Sundar Krishnamurty, Ian Grosse

University of Massachusetts Amherst, Amherst, MA

Yan Lu

National Institute of Standards and Technology, Gaithersburg, MD

Paper No. DETC2018-86055, pp. V01AT02A009; 10 pages
  • ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 38th Computers and Information in Engineering Conference
  • Quebec City, Quebec, Canada, August 26–29, 2018
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5172-2
  • Copyright © 2018 by ASME


Statistical metamodels can robustly predict manufacturing process and engineering systems design results. Various techniques, such as Kriging, polynomial regression, artificial neural network and others, are each best suited for different scenarios that can range across a design space. Thus, methods are needed to identify the most appropriate metamodel or model composite for a given problem. To account for pros and cons of different metamodeling techniques for a wide diversity of data sets, in this paper we introduce a super-metamodel optimization framework (SMOF) to improve overall prediction accuracy by integrating different metamodeling techniques without a need for additional data. The SMOF defines an iterative process first to construct multiple metamodels using different methods and then aggregate them into a weighted composite and finally optimize the super-metamodel through advanced sampling. The optimized super-metamodel can reduce an overall prediction error and sustains the performance regardless of dataset variation. To verify the method, we apply it to 24 test problems representing various scenarios. A case study conducted with additive manufacturing process data shows method effectiveness in practice.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In